

COLLABORATIVE RESEARCH SURVEY ON MARINE FISHERIES RESOURCES AND ENVIRONMENT IN THE GULF OF THAILAND 2018

The Study of Sediment Distribution Coefficients (K_d) for Radionuclides in the Gulf of Thailand

Presented by

Darunwan CHUENBUBPAR, Chitsanupong Khrautongkieo, Nattchakarn Nakkaew, Rungsuk Suwanklang, Yutthana Tumnoi and Isara Chanrachkij Office of Atoms for Peace

Outline

- Introduction
- Materials and methods
- Results and discussion
- Conclusion

INTRODUCTION

Assessment

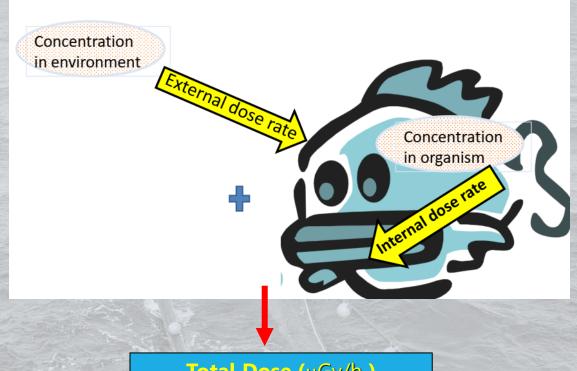
Pathway of exposure

Animal or plant

Radionuclide source

Ecological Parameters

Total Absorbed dose


Impact

Decision making regarding environmental protection

Radiation Dose and Risk Assessment in Biota

Total Dose (µGy/h)

 $K_d \text{ (dimensionless)} = \frac{\text{concentration per unit mass of particulate } \frac{kg}{kg} \text{or } \frac{Rq}{kg \text{ dry weight}}}{\text{concentration per unit mass water } (\frac{kg}{kg} \text{ or } \frac{Rq}{Kg})}$

 $K_d\left(\frac{L}{Kg}\right) = \frac{concentration\ per\ unit\ mass\ of\ particulate\ (\frac{kg}{kg}\ or\ \frac{Bq}{kg\ dry\ weight})}{concentration\ per\ unit\ volume\ of\ water\ (\frac{kg}{L}\ or\ \frac{Bq}{L})}$

Radioactivity in Marine Environment

Terrestrial radionuclides

• Naturally Occurring Radioactive Material (Ra, Th, K)

Cosmogenic radionuclides

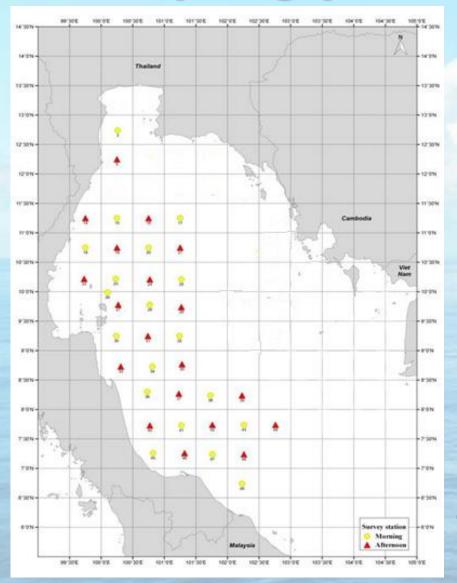
• (c-14, Be-7)

Artificial radionuclides

- Short life (I-131)
- Long life (Sr-90, Cs-137)

Objectives

To establish K_d derived from the Thai marine environment leading to more accurate estimation on assessment of radiation dose and radiological risk



MATERIALS AND METHODS

Sampling point

38 Stations in the gulf of Thailand (Between Aug – Sep 2018)

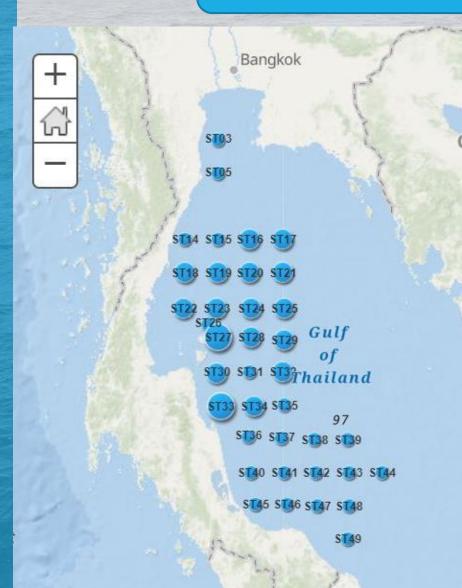
Seawater (y-emitting radionuclides) Collection & Measurement

Seawater (Cs-137) Collection & Measurement

Sediment Collection & Measurement

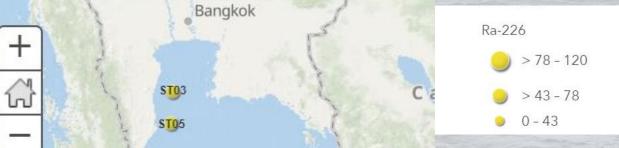
Smith Mac Intyre Grab

HPGe Gamma Spectrometry 80,000 sec



RESULTS AND DISCUSSIONS

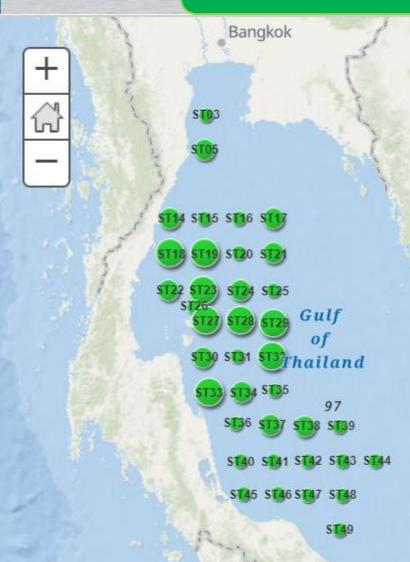
K_d of Th-232 (L/kg)



Th-23	32
	> 98 - 120
	> 63 - 98
•	0 - 63

Th-232	
Mean	62.79
Standard Error	2.21
Median	61.78
Standard Deviation	13.62
Minimum	44.22
Maximum	109.78

Ref	Th
IAEA , Tecdoc 422 (open sea)	5E+6
NOZAKI, 1990	3E+6



44.46
1.32
43.25
8.15
33.92
75.03

	Ref	Ra	
ښر	JAEA , Tecdoc 422 (open	4 E+3	
	sea)		
	MOORE, 1996	2 E+2	الر

K_d of K-40 (L/kg)

K-40	
	> 86 - 120
	> 68 - 86
•	0 - 68

K-40	
Mean	<u>68.</u> 69
Standard Error	3.37
Median	66.96
Standard Deviation	20.76
Minimum	36.06
Maximum	114.41

Ref	Th
OAP , 1989	28

K_d of Cs-137

ST03 ST05 ST14 ST15 ST16 ST17 ST18 ST19 ST20 ST21 ST22 ST23 ST24 ST25 ST26 ST28 ST29 Gulf SI30 SI31 SI32Thailand ST33 ST34 ST35 ST36 ST37 ST38 ST39 ST40 ST41 ST42 ST43 ST44 ST45 ST46 ST47 ST48

Cs-137

> 2,382 - 3,035

> 672 - 2,382

0 - 672

Cs-137	
Mean	667.51
Standard Error	108.85
Median	357.60
Standard Deviation	671.0
Minimum	74.3
Maximum	3035.1

REF	Cs
IAEA , Tecdoc 422 (open sea)	2E+3
KENNISH, 1997	4E+4
OAP, 1989-1991 (Cs-137)	428 l/kg

CONCLUSIONS

The results reveal that averaged K_d values for ²²⁶Ra, ²³²Th, ⁴⁰K, and ¹³⁷Cs are 44.46, 62.79, 68.69, and 667.51 L/kg, respectively.

The obtained results was furthermore compared with the recommended values from the International Atomic Energy Agency (IAEA). It was found that the IAEA-recommended K_d values are several magnitude **higher than** those from this study. Therefore, the assessment using K_d derived from different geographical locations would have to be carried out with caution.

Collaborative Research Survey on Marine Fisheries Resources and Environment in the Gulf of Thailand 2018