

COLLABORATIVE RESEARCH SURVEY ON MARINE FISHERIES RESOURCES AND ENVIRONMENT IN THE GULF OF THAILAND 2018

Distribution of benthic debris in the Gulf of Thailand

Penchan Laongmanee¹*, Wirote Laongmanee¹, Nakaret Yasook² and Chalerm Phusririt³

- 1 Faculty of Marine Technology, Burapha University,
- 2 Southeast Asian Fisheries Development Center and

3 Department of Fisheries

Supported by Southeast Asian Fisheries Development Center Training Department, Samut Prakan, Thailand

Map of study area and distribution of survey stations

Survey period: 17 Aug-11 Oct 2018

Bottom trawl survey: 73 stations

Sampling equipment,

Specification of MV.SEAFDEC2 bottom trawl (SEAFDEC/TD,2018) as follow;

- 1) Ground rope length 40.12 m.
- 2) Head rope length 32.56 m.
- 3) Total net length 58.11 m.
- 4) Cod end length 6.40 m.
- 5) Wing net mesh size 160 mm.
- 6) Cod end mesh size 40 mm.

Method:

- Methodology for Monitoring Marine Litter on the Seafloor (continental shelf) (Vlachogianni,T. and Somarakis, S., 2014)
- Trawling speed ~3 Knots
- Trawling period 1 hour
- Spread of trawl (width of the path swept by the trawl) -- > from sensor (Scanmar) attached

Method: calculate swept area

Swept area $(km^2) = D * W$

- D is the cover of distance = V * t
- V is the velocity of the trawl over the ground when trawling in km/hour
- t is the time spent trawling in hour
- W is width of the path swept by the trawl recorded from Door opening sensor (https://www.scanmar.no/sensors/

Total number of benthic debris -- > 906 items , 6.2 km²)

Benthic debris by size classes

Benthic debris by age

Density of benthic debris (items/km²)

Density of benthic debris (kg/km²)

Boxplot of debris weight (kg/km²) in each depth range p-value = 0.855

debris\$Depth.range.m.

Boxplot of debris weight (kg/km²) in each depth range p-value = 0.345

debris\$Depth.range.m.

Boxplot of debris (items/km²) in depth range p-value = 0.00215 **

debris1\$Depth.range.m.

Frequency of occurrence ,mean number and weight of debris in each water depth range

Depth		Area		Mean number	Mean weight
range	Number	covered	Frequency	of items ±SD	of debris
(m)	of trawls	(km ²)	%	(items/km ²)	±SD (kg/km2)
20-30	13	1.10	100	176.71±113.47 ^a	26.5±64.04 [°]
31-40	12	1.09	100	217.50±123.98 ^a	14.71±8.40 ^ª
41-50	11	1.04	100	158.08±146.54 ^{ab}	9.13±16.20 ^ª
51-60	19	1.75	100	77.85±59.27 ^b	15.55±48.43 [°]
61-70	10	0.68	100	79.24±35.18 ^b	6.92±17.07 ^a
71-80	6	0.55	100	153.81±51.45 ^{ab}	8.97±11.82 ^a

Surface current & number of debris (items/km²)

"Monthly mean fields for product GLOBAL_ANALYSIS_FORECAST_PHY_001_024" "CMEMS - Global Monitoring and Forecasting Centre"

Surface current & number of debris (items/km²)

Surface current & number of debris (items/km²)

Composition of benthic debris categories by type of materials

Items/km²

Artificial Polymer materials(items/km²)

Cloth/Textile (items/km²)

10 items/km²

20 items/km²

55 items/km²

Rubber (items/km²)

Metal (items/km²)

Glass/Ceramics (items/km²)

10 items/km²

20 items/km²

35 items/km²

Wood (items/km²)

Comparison with other areas

Area	Study period	kg/km ²
Mediterranean Sea	June 2012	78.68±146
(Loulad S., <i>et.al</i> ,2019)	June 2013	135.91±176
	June 2015	85.83±201
Gulf of Thailand	Aug-Oct 2018	0.02 - 231
		Avg 14.77±38

Area	Study period	Items/km² (frequency of occurrence)
Southern Baltic sea (Malinga B.U.,et al,2018)	2015-2016	0 (34%)-223 Avg 20±30
Gulf of Thailand	Aug-Oct 2018	11 – 482 (100%) Avg 138.58±15

Summaries

- 73 stations, coveraged area 6.2 km²,
- 906 items
- Plastic 83%, Cloth/Textile 7%, Metal 7%, Glass/Ceramics 2%, Rubber 1%, Wood 0. 3%
- Frequency of occurrence -- >100%
- Density -- > 0.02 231 kg/km², Avg 14.77±38 kg/km²
- Density -- > 11 482 items/km², Avg 138.58±15 items/km²
- Items/km² in <40 m > 41-50 and 71-80m > 41-60 m
- Eastern area > Western and Center -- > relate with circulation

References:

SEAFDEC/TD. 2018. Report on the regional technical meeting collaborative research survey on fisheries resources and marine environment in the Gulf of Thailand (Cambodia, Thailand and Vietnam waters) 24-26 July 2018, TD/RP/202.

Vlachogianni,T. and Somarakis, S. 2014. Methodology for Monitoring Marine Litter on the Seafloor (continental shelf). Download from https://mio-ecsde.org/wp-content/uploads/2014/12/Seafloorlitter_monitoring-methodology_continental-selves_final.pdf. Download on July,2018. 11 pages.

Loulad S, Houssa R., Ouamari EL and Rhinane H., 2019. Quantity and spatial distribution of seafloor marine debris in the Moroccan Mediterranean Sea. Marine Pollution Bulletin 139, 163-173.

Malinga B.U.,Wodzinowski T.,Witalis B.and Zalewski M.,2018. Marine litter on the seafloor of the Southern Baltic. Marine Pollution Bulletin 127, 612-617.

