

COLLABORATIVE RESEARCH SURVEY ON MARINE FISHERIES RESOURCES AND ENVIRONMENT IN THE GULF OF THAILAND 2018

Carbon dioxide fluxes and chlorophyll-a distribution in the Gulf of Thailand during 2018 Southwest Monsoon

Sujaree Bureekul

Chulalongkorn University Contact: bsujaree@gmail.com

> Supported by Southeast Asian Fisheries Development **Training Department, Samut Prakan, Thatu**

Contributors

- ¹ Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- ² Center of Excellence on Hazardous Substance Management, Chulalongkorn University, Bangkok, Thailand
	- Penjai Sompongchaiyakul^{1,2}
	- Chawalit Charoenpong¹,
	- Supranee Wattanapongsakul¹,
	- Suparat Srisaard¹
	- Tanakorn Ubonyaem¹
	- Jariya Kayee¹
- ³ Southeast Asian Fisheries Development Center/Training Department (SEAFDEC/TD), Thailand
	- Pontipa Luadnakrob

Significance – CO2

An increase in atmospheric CO2 with the decrease of seawater pH

Collaborative Research Survey on Marine Fisheries Resources and Environment in the Gulf of Thailand 2018

Significance – CO2

- **Increase of atm CO2** to 404.06 ppm in 2018
- Ocean ; **adsorb CO2 and react with seawater**
- Dissolved CO2 **Speciation**; H2CO3, HCO3- and CO32-

Significance – Carbon cycle in ocean

Carbon pump and solubility pump

- Modern Ocean = H⁺ increase
- Change buffering capacity (pH) => ocean acidification
- Reduction of primary productivity (Chlorophyll-a)
- Dissolution of CaCO3 shell formation

https://marine.copernicus.eu/wp-content/uploads/2019/07/Carbon-pump.png **5**

Significance – GOT as CO2 storage

Previous study- SEAFDEC 2013 (inter monsoon) Flux CO2 [mmol/m-2day] $(-249) - (+36)$ (sink) (source) Consider as CO2 sink except coastal area (blue-pink color)

Pisut Tassawad, 2014

Objective -Air-Sea CO2 Flux in GOT

Role and capacity of the GOT as carbon (as CO2) storage

Scope of study – Sampling and Data

- **Calculation air-sea flux of CO2** required data inputs from SEAFDEC-2018 research survey as follows
- 73 station (4-6 depths) water sampling with Niskin bottles coupled with CTD rosette system data
	- CTD data => salinity [psu], pressure [dbar], pH and temp $[°C]$
	- Niskin Bottles (water sampling) => total alkalinity, nutrient; silicate and phosphate, chlorophyll-a, total suspended solid
	- Meteorological data; wind speed [m/s]

Sampling and preparation

Sample and data analysis for CO2 Flux

- Silicate, phosphate and chlorophyll-a; colorimetric method (Strickland and Parsons, 1972)
- Total alkalinity potentiometric titration with gran plot (Grasshoff et al., 1999)
- Calculation of CO2 speciation in seawater (CO2SYS ver 25) (Pelletier et al.,2015 and Lewis and Wallace, 1998) ; pCO2 [uatm] and TCO2 [umol/kg sw]
- Air-Sea Flux Calculation [mmol/m²/d] (Balcorta, 2015; Matlab code)

Air – Sea flux of CO2 (mmol.m-2 d -1)

FCO2 =K*a(dpCO²)

Where $dpCO₂$ is $pCO₂$ _{aqua}- $pCO₂$ _{atm} pCO_{2atm} : fix value(404.66 ppm; NOAA, 2018) K is the transfer velocity (Wanninkhof, 1992) $a = CO₂$ solubility constant (Weiss, 1974) (+) sea > air => **source** (–) sea < air => **sink**

> Function for air-sea CO2 flux calculation in matlab (Cecilia Chapa Balcorta, 2015)

Summary – Parameters in SEAFDEC-2018

Salinity

Salinity [PSU] 5 m below surface Salinity [PSU] 5 m above bottom $14^{\circ}N$ $14°N$ 34 34 $12°N$ $12°N$ 32 32 $10^{\circ}N$ $10^{\circ}N$ 30 30 28 28 $8°N$ $8°N$ **Dean Data View Deean Data View** 26 26 $6°N$ $6°N$ $\overline{100^\circ E}$ $98^{\circ}E$ 100°E 102°E 104°E 98°E 102°E 104°E

Greater salinity in bottom water

Chlorophyll-A [ug/L]

Greater bottom Chl-a => higher productivity (higer conc. of bottom nutrient)

pH

Lower pH in bottom water

Total Alkalinity [umol/kg-sw]

Highest conc. in lower GOT [greater buffering capacity]

Cross section – North to South

Cross section – West to East

Cross section –Across Sill

Scatter plot

pCO2 [uatm] and CO2 Flux [mmol/m² /day]

Air – Sea Flux of CO2 in GOT (- 25.6) to (+61.4) mmol/m² /day

GOT as CO2 sink (SW monsoon)

Revelle factor buffering capacity (8 – 12)

Summary

Flux CO2 [mmol/m2 day] @ Station ID=first

- Bottom water show higher concentration of nutrients and Chlorophyll-a (mean conc. 0.51 + 0.55 ug/L) while pH is lowering
- However, total alkalinity still greater at bottom (greater buffering capacity)
- Cross section showed high pCO2 at depth (near 10N)
- Flux of CO2 range from **(- 25.6) to (+61.4) mmol/m² /day**
- GOT losing it CO2 storage capacity in comparing with 2013 data

References

- Dickson, A.G., Sabine, C.L. and Christian, J.R. (Eds.) 2007. Guide to best practices for ocean CO2 measurements. PICES Special Publication 3, 191 pp)
- Jiang L. Q., et al. 2019. Surface ocean pH and buffer capacity: past, present and future. Scientific Reports volume 9, 18624 https://doi.org/10.1038/s41598-019-55039-4
- Ocean Data View (R. Schlitzer; Ocean Data View; http:/odv.awi.de, 2016)
- Tassawad P. 2014. Sink and source of carbon dioxide in the Gulf of Thailand. Thesis dissertation. Chulalongkorn university

Thank you

ดูเอกี่จะสามารถประมงแห่งเล่นอีกกล้มเองกลมเปิด

 $x \rightarrow x$