

COLLABORATIVE RESEARCH SURVEY ON MARINE FISHERIES RESOURCES AND ENVIRONMENT IN THE GULF OF THAILAND 2018

Carbon dioxide fluxes and chlorophyll-a distribution in the Gulf of Thailand during 2018 Southwest Monsoon

Sujaree Bureekul

Chulalongkorn University Contact: bsujaree@gmail.com

> Supported by Southeast Asian Fisheries Development Cent Training Department, Samut Prakan, Thaila

Contributors

- ¹ Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- ² Center of Excellence on Hazardous Substance Management, Chulalongkorn University, Bangkok, Thailand
 - Penjai Sompongchaiyakul^{1,2}
 - Chawalit Charoenpong¹,
 - Supranee Wattanapongsakul¹,
 - Suparat Srisaard¹
 - Tanakorn Ubonyaem¹
 - Jariya Kayee¹
- ³ Southeast Asian Fisheries Development Center/Training Department (SEAFDEC/TD), Thailand
 - Pontipa Luadnakrob

Significance – CO2

An increase in atmospheric CO₂ with the decrease of seawater pH

Collaborative Research Survey on Marine Fisheries Resources and Environment in the Gulf of Thailand 2018

Significance – CO2

- Increase of atm CO2 to 404.06 ppm in 2018
- Ocean ; adsorb CO2 and react with seawater
- Dissolved CO2 Speciation; H2CO3, HCO3⁻ and CO3²⁻

Significance – Carbon cycle in ocean

Carbon pump and solubility pump

- Modern Ocean = H⁺ increase
- Change buffering capacity (pH)
 => ocean acidification
- Reduction of primary productivity (Chlorophyll-a)
- Dissolution of CaCO₃ shell formation

https://marine.copernicus.eu/wp-content/uploads/2019/07/Carbon-pump.png

Significance – GOT as CO2 storage

Previous study- SEAFDEC 2013 (inter monsoon) Flux CO₂ [mmol/m⁻²day] (-249) - (+36)(sink) (source) Consider as CO₂ sink except coastal area (blue-pink color)

Pisut Tassawad, 2014

Objective - Air-Sea CO2 Flux in GOT

Role and capacity of the GOT as carbon (as CO2) storage

Scope of study – Sampling and Data

- Calculation air-sea flux of CO2 required data inputs from SEAFDEC-2018 research survey as follows
- 73 station (4-6 depths) water sampling with Niskin bottles coupled with CTD rosette system data
 - CTD data => salinity [psu], pressure [dbar], pH and temp [°C]
 - Niskin Bottles (water sampling) => total alkalinity, nutrient; silicate and phosphate, chlorophyll-a, total suspended solid
 - Meteorological data; wind speed [m/s]

Sampling and preparation

Sample and data analysis for CO₂ Flux

- Silicate, phosphate and chlorophyll-a; colorimetric method (Strickland and Parsons, 1972)
- Total alkalinity potentiometric titration with gran plot (Grasshoff et al., 1999)
- Calculation of CO₂ speciation in seawater (CO₂SYS ver 25) (Pelletier et al., 2015 and Lewis and Wallace, 1998); pCO₂ [uatm] and TCO₂ [umol/kg sw]
- Air-Sea Flux Calculation [mmol/m²/d] (Balcorta, 2015; Matlab code)

Air – Sea flux of CO₂ (mmol.m⁻² d⁻¹)

$FCO_2 = K*a(dpCO_2)$

Where dpCO2 is pCO2_{agua}- pCO2_{atm} pCO2_{atm} : fix value(404.66 ppm; NOAA, 2018) K is the transfer velocity (Wanninkhof, 1992) a = CO2 solubility constant (Weiss ,1974) (+) sea > air => source (-) sea < air => sink

> Function for air-sea CO2 flux calculation in matlab (Cecilia Chapa Balcorta, 2015)

Summary – Parameters in SEAFDEC-2018

Parameter	Min	Max	Avg	<u>+</u> SD
Salinity[PSU]	26.7	33.8	32.5	0.90
рН	7.690	8.302	8.118	0.101
Temperature[°C]	25.7	30.1	28.7	0.82
Oxygen[mg/l]	3.80	8.28	6.58	0.95
Alkalinity [µmol/KgSW]	1833	2506	2099	88.59
Phosphate [µmol/KgSW]	0.01	0.50	0.11	0.08
DSi [µmol/KgSW]	2.37	57.4	13.6	13.2
Chlorophyll-A [µg/L]	0.03	4.26	0.51	0.55
TSS [μg/L]	1.27	25.07	6.55	2.62
TCO2 [μmol/KgSW]	1608	2231	1850	92.81
pCO2 [µatm]	282.2	1443.7	503.0	172.2

Salinity

Salinity [PSU] 5 m below surface Salinity [PSU] 5 m above bottom 14°N 14°N 34 34 12°N 12°N 32 32 10°N 10°N 30 30 28 28 8°N 8°N Ocean Data View Ocean Data Viev 26 26 6°N 6°N 98°E 100°E 102°E 104°E 98°E 100°E 102°E 104°E

Greater salinity in bottom water

Chlorophyll-A [ug/L]

Greater bottom Chl-a => higher productivity (higer conc. of bottom nutrient)

pН

Lower pH in bottom water

Total Alkalinity [umol/kg-sw]

Highest conc. in lower GOT [greater buffering capacity]

Cross section – North to South

Cross section – West to East

Collaborative Research Survey on Marine Fisheries Resources and Environment in the Gulf of Thailand 2018

TCO2 umole/KgSW]

Cross section – Across Sill

Collaborative Research Survey on Marine Fisheries Resources and Environment in the Gulf of Thailand 2018

TCO2 umole/KgSW]

Scatter plot

pCO₂ [uatm] and CO₂ Flux [mmol/m²/day]

Air – Sea Flux of CO2 in GOT (- 25.6) to (+61.4) mmol/m²/day

GOT as CO2 sink (SW monsoon)

Revelle factor buffering capacity (8 – 12)

Summary

- Flux CO2 [mmol/m2 day] @ Station ID=first
- Bottom water show higher concentration of nutrients and Chlorophyll-a (mean conc. 0.51 + 0.55 ug/L) while pH is lowering
- However, total alkalinity still greater at bottom (greater buffering capacity)
- Cross section showed high pCO2 at depth (near 10N)
- Flux of CO₂ range from (- 25.6) to (+61.4) mmol/m²/day
- GOT losing it CO2 storage capacity in comparing with 2013 data

References

- Dickson, A.G., Sabine, C.L. and Christian, J.R. (Eds.) 2007. Guide to best practices for ocean CO2 measurements. PICES Special Publication 3, 191 pp)
- Jiang L. Q., et al. 2019. Surface ocean pH and buffer capacity: past, present and future. Scientific Reports volume 9, 18624 https://doi.org/10.1038/s41598-019-55039-4
- Ocean Data View (R. Schlitzer; Ocean Data View; http:/odv.awi.de, 2016)
- Tassawad P. 2014. Sink and source of carbon dioxide in the Gulf of Thailand. Thesis dissertation. Chulalongkorn university

Thank you

The A