

The On-line Regional Training Course on Sampling Gear Design for Onboard Fisheries Resource Survey

31 August - 4 September 2020

CpUE standardization

Prof. Tuantong Jutagate Fisheries Program, Faculty of Agriculture Ubon Ratchathani University

What is catch per unit of (fishing) effort, CpUE? (1)

- CpUE (*aka* catch rate): the term for expressing how much fish (all or a single species) is caught by a unit effort
- **Catch:** weight of all (or a single) species taken within (a) a limited geographical area or stratum, (b) a given reference period (i.e. a calendar month) and (c) a specific boat/gear category. In some cases, catch is expressed in "number of individual"
- Effort: a measure of the amount of fishing unit, such as number of fishing hour/day, number of fishing gear etc., used for catch

Stamatopoulos (2002)

What is catch per unit of (fishing) effort, CpUE? (2)

• CpUE is simply calculated as $\frac{Catch(C)}{Effort(E)}$ from fishery –dependent or –independent data

- CpUE can be also calculated by $\frac{C}{E} = qN$, where q is fishing gear efficiency , i.e. catchability coefficient, and N is population size, which sometimes used Biomass (B).
- CpUE varies according to areas and times fished as well as fishing gear efficiency

Using of CpUE (1)

• CpUE is commonly used as a relative index of stock (or population) abundance

CpUE is also used as the input variable for stock assessment models, e.g. surplus production model

Using of CpUE (2.1)

• As CpUE is proxy to abundance, it can be also used to estimate the fish abundance Abundance

Using of CpUE (2.2)

• As CpUE is proxy to abundance, it can be also used to estimate the fish abundance Abundance

https://www.youtube.com/watch?v=yLXEYWZnUgA

Catch (C) = catchability (q) * Effort (f) * Biomass (B)

$$C_{i,t} = q_i E_{i,t} B_t$$

So, the catch per unit effort (CpUE; C/f) is

CpUE = q * B

and

 $(CpUe)_{i,t} = q_i * B_t$

where

(CpUE)_{i,t} = Catch per unit effort of vessel type i at time t

q_i = catchability of vessel type i

 B_t = Biomass at time t

Example of CpUE standardization for 2 fleets

					i	FI	eet 1	Fleet 2	q1/q2				
					q	0.00	0015	0.00045	3				
					_						0.0		
		Fleet 1			Fleet 2			Fleet 1 & 2 combined					
	Stock												
Year	size	I	Effort	Catch	CPUE	I	Effort	Catch	CPUE	Effort	Catch	CPUE	
2001	10000		400	600	1.50		100	450	4.50	500	1050	2.10	
2002	12000	1	370	666	1.80		130	702	5.40	500	1368	2.74	
2003	14000		340	714	2.10		160	1008	6.30	500	1722	3.44	
2004	16000		310	744	2.40		190	1368	7.20	500	2112	4.22	
2005	16000		280	672	2.40		220	1584	7.20	500	2256	4.51	
2006	16000		250	600	2.40		250	1800	7.20	500	2400	4.80	
-	-				-					-			

Condition:

- Six (6) years CpUE data from 2 fishing fleets (i.e. gears)
- known information stock size, effort and catchability
- Effort in Fleet 1 declines while it increases in fleet 2. Total effort remains constant

Difference in gears (or vessels) efficiencies (1)

So, how to standardize? (1)

- Estimate the relative changes in biomass:
 - relative to the first year in the data series:

 $B_t = \alpha_t B_1$

Bt – biomass at time t B1 – biomass in year 1 at – scaling factor where:

$$\alpha_t = B_t / B_1$$

and hence a1 = 1.00

Relative Stock stock Year size size 10000 2001 1.00 2002 12000 1.20 2003 14000 1.40 16000 1.60 2004 2005 16000 1.60 2006 16000 1.60

Example from	fishvice.hafro	.is/lib/exe/fetc	h.php/crfm:03b	iostatistics04c.ppt

So, how to standardize? (2)

As from previous slide

 $B_t = \alpha_t B_1$

We also know that

$$CpUE_{t} = qB_{t}$$

then

$$CpUE_{t} = qB_{t}$$
$$= q\alpha_{t}B_{1}$$
$$= \alpha_{t}qB_{1}$$
$$= \alpha_{t}CpUE_{1}$$

relative to the first year
of the data series ##

So, how to standardize? (3)

Therefore, in general for multivessel fisheries we can write

 $CpUE_{t} = \alpha_{t}CpUE_{1}$

As we have 2 fleets with different catchability (q) (that harvest on the same stock)

$$CpUE_{1,t} = q_1B_t ; B_t = CpUE_{1,t}/q_1$$

$$CpUE_{2,t} = q_2B_t$$

$$= q_2 (CpUE_{1,t}/q_1)$$

$$= (q_2/q_1)CpUE_{1,t}$$

$$= (q_2/q_1)\alpha_t (CpUE_{1,1})$$

$$= \beta_{2|1} \alpha_t (CpUE_{1,1})$$

where, b2|1 is the efficiency of fleet 2 relative to fleet 1.

Difference in gear (or vessel) efficiencies (1)

So, how to standardize? (4)

$$CpUE_{i,t} = \beta_i \alpha_t CpUE_{1,1}$$

where

i: fleet i CpUE _{i,t}: CpUE of fleet i at time t CpUE _{1,1}: CpUE of the 1st fleet in the 1st time period β_i : The efficiency of fleet i relative to fleet 1 α_t : Relative abundance

To take into account measurement errors the statistical model becomes:

$$CpUE_{i,t} = \beta_i \alpha_t CpUE_{1,1} e^{\varepsilon}$$

So, how to standardize? (5)

$$CpUE_{i,t} = \beta_i \alpha_t CpUE_{1,1} e^{\varepsilon}$$

The error can be normalized by transformation

$$\ln \left(CpUE_{i,t} \right) = \ln \left(\beta_i \right) + \ln \left(\alpha_t \right) + \ln \left(CpUE_{1,1} \right) + \varepsilon_{t,i}$$

The equation can be re-written as

$$(CpUE_{i,t}/CpUE_{1,1}) = \beta_i \alpha_t e^{\varepsilon}$$

and

$$\ln \left(CpUE_{i,t} / CpUE_{1,1} \right) = \ln \left(\beta_i \right) + \ln \left(\alpha_t \right) + \varepsilon_{t,i}$$

Difference in gear (or vessel) efficiencies (1)

So, how to standardize? (5)

$$\ln \left(CpUE_{i,t} / CpUE_{1,1} \right) = \ln \left(\beta_i \right) + \ln \left(\alpha_t \right) + \varepsilon_{t,i}$$

Parameters								
Name	numeric	In value	value					
α2001	2001	0.00	1.00					
α2002	2002	0.18	1.20					
α2003	2003	0.34	1.40					
α2004	2004	0.47	1.60					
α2005	2005	0.47	1.60					
α2006	2006	0.47	1.60					
β1	1	0.00	1.00					
β2	2	1.10	3.00					

LM mode	el 🛛				
		observed			predicted
time (t)	vessel (i)	In cpue	ln(αt)	ln(βi)	In cpue
2001	1	0.00	0.00	0.00	0.00
2002	1	0.08	0.18	0.00	0.18
2003	1	0.29	0.34	0.00	0.34
2004	1	0.49	0.47	0.00	0.47
2005	1	0.46	0.47	0.00	0.47
2006	1	0.35	0.47	0.00	0.47
2001	2	0.98	0.00	1.10	1.10
2002	2	1.19	0.18	1.10	1.28
2003	2	1.39	0.34	1.10	1.44
2004	2	1.56	0.47	1.10	1.57
2005	2	1.50	0.47	1.10	1.57
2006	2	1.56	0.47	1.10	1.57

Difference in gear (or vessel) efficiencies (1)

An alternative simply standardization (1)

- Developed by Beverton and Holt (1957), defining "a standard vessel" or "standard gear"
- Then, determining the relative fishing power of all other vessels by

$$RFP_i = \frac{C_i/E_i}{C_S/E_S}$$

- where
 - RFP_i is the relative fishing power for vessel i
 - C_i and C_s are the total catch by vessel i and the total catch by the standard vessel , respectively, during the period in which both the standard vessel and vessel i were in the fishery
 - E_i and E_s are the total days fished (or whatever measure of fishing effort is chosen) by vessel i and by the standard vessel, respectively, during the period in which both the standard vessel and vessel i were in the fishery

An alternative simply standardization (2)

• The standardized catch rate for year t, I_t, is then

$$I_t = \frac{\sum_i C_{t,i}}{\sum_i (RFP_i E_{t,i})}$$

- where
 - Ct, i is the catch by vessel i in year t,
 - Et, i the number of days fished by vessel i in year t.
- Disadvantages
 - not generalize easily to deal with multiple factors such as month and area
 - not generalize easily when it is difficult to identify the "standard vessel"

Effects by spatio – temporal differences (1)

- Not only the difference, or evolution, in fishing gears that affect CpUE
- Factors such as fishing ground, zones, season and year are also affect CpUE
- These factors, therefore, also produce bias in abundance estimation and stock assessment

CPUE standardization Effects by spatio – temporal differences (2)

Example on the effect of Year (the same fishing ground)

Effects by spatio – temporal differences (2)

Example on the effect of Year (the same fishing ground)

IF STANDARDIZATION

CPUE standardization Generalized Linear Model (GLM) for CpUE standardization

- The GLM is a flexible generalization of ordinary linear regression that allows for response variables that have error distribution models other than a normal distribution.
- The GLM generalizes linear regression by allowing the linear model to be related to the response variable via a link function and by allowing the magnitude of the variance of each measurement to be a function of its predicted value.

Generalized Linear Model (GLM) for CpUE standardization

General model

Example data

CpUE = mean + year + season + Area +Error

Sometime CpUE is log-transformed, i.e. log(CpUE + 1) or log(CpUE + constant)

×

CPUE standardization Analyzing by R (example)

đ × RStudio File Edit Code View Plots Session Build Debug Profile Tools Help 🔾 🔹 🐼 🥶 🖌 拱 📑 👘 📥 📝 🔿 Go to file/function Addins -R Project: (None) • script_standardize.R* × ----Environment History Connections $-\Box$ 🔊 🔚 🗌 Source on Save 🔍 🎢 🗸 📋 📑 Run 📑 📑 Source 🔹 🚍 😅 📊 📑 Import Dataset 🔹 💰 🗏 List • 🛛 🕑 • 1 ## Script for standardize Global Environment • Q dat=read.table("CPUE.txt", header=T) 3 4 names(dat) 5 attach(dat) Environment is empty 6 fit <- glm(CPUE~factor(Year)+factor(Q)+factor(A),family=gaussian(link="identity"), data=dat) 7 summary(fit) 8 par(mfrow=c(2,2)) 9 plot(fit) 10 pred <- predict(fit, type="response")</pre> 11 pred o pred predict {stats} Files Plots Packages Help Viewer - -> predict.glm {stats} predict.lm {stats} 🚛 📫 🔎 Zoom 🛛 🛺 Export 🔹 🙆 🚽 pretty.default {base} presidents 11:5 (Top Level) \$ R Script ¢ Console D:/MSY estimations/Aspic workshop/Aug 28/Practice/CPUE/ Seacescerear compacting Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ∧ ENG 25/8/2563 🔚 💽 🛜 📑 Q 目 2 長 Type here to search 0

Recommended reading

Available online at www.sciencedirect.com

Fisheries Research 70 (2004) 141-159

www.elsevier.com/locate/fishres

Standardizing catch and effort data: a review of recent approaches

Mark N. Maunder^{a,*}, André E. Punt^b

^a Inter-American Tropical Tuna Commission, 8604 La Jolla Shores Drive, La Jolla, CA 92037-1508, USA
^b School of Aquatic and Fishery Sciences, University of Washington, Box 355020, Seattle, WA 98195-5020, USA

Abstract

The primary indices of abundance for many of the world's most valuable species (e.g. tunas) and vulnerable species (e.g. sharks) are based on catch and effort data collected from commercial and recreational fishers. These indices can, however, be misleading because changes over time in catch rates can occur because of factors other than changes in abundance. Catch-effort standardization is used to attempt to remove the impact of these factors. This paper reviews the current state of the art in the methods for standardizing catch and effort data. It outlines the major estimation approaches being applied, the methods for dealing with zero observations, how to identify and select appropriate explanatory variables, and how standardized catch rate data can be used when conducting stock assessments.

Keywords: Abundance; Catch; CPUE; Effort; GAM; GLM; GLMM

Sources and References

http://fishvice.hafro.is/lib/exe/fetch.php/crfm:03biostatistics04c.ppt

http://derekogle.com/NCNRS349/modules/Depletion/BKG.html

https://www.youtube.com/watch?v=yLXEYWZnUgA

- Maunder M.N., Punt A.E. (2004) Standardizing catch and effort data: a review of recent approaches, Fisheries Research 70: 141-159
- Nishida T. (2018) course material on the SEAFDEC workshop on Stock/Risk assessments by ASPIC
- Stamatopoulos, C. (2002) Sample-based fishery surveys: A technical handbook. FAO Fisheries Technical Paper. No. 425. FAO, Rome. 132p.