

Sampling Process and Data Recording

Assoc. Prof. Thanitha Darbanandana Fishery Dynamics Research Laboratory Department of Fishery Biology Faculty of Fisheries Kasetsart Univerity, THAILAND

E-mail: thanitha.t@ku.th

Line i.d.: fishery_dynamics

CONTENT

General Sampling Overview

General Sampling Process

Data Recording

Sampling Designs

- Equal Probability Sampling
- Unequal Probability Sampling
- Non-probability Sampling

How to collect
Row samples

Equal Probability Sampling

- Lucky Draw
 - Use in small population
 - With or Without replacement
- Random number table
 - Often used in large population and sampling frame is available
 - With or without replacement
- Randomize by computer
 - Uses a computer to generate a random number between the numbers 1 and N and
 - Use the command to select the desired number of numbers.

Simple Random Sampling (SRS)

<u>Advantage</u>	<u>Disadvantage</u>
1. The most easiest sampling design	1. Only suitable for Homogeneous population
2. Easy estimation, methods can be adjusted.	2. Not suitable for an indefinite population because it is difficult to estimate the suitable sample size
	3. It is the most expensive plan as it may require a large sample size. To control the 8 discrepancies within the desired scope

Systematic Sampling

- Taking the first sample unit randomly
- After that, every k next sample unit will be selected until the desired n unit of sample is obtained
- For convenience, N = kn in order to have k of all possible sample units
- There are 2 methods:
 - Linear systematic sampling
 - Circular systematic sampling

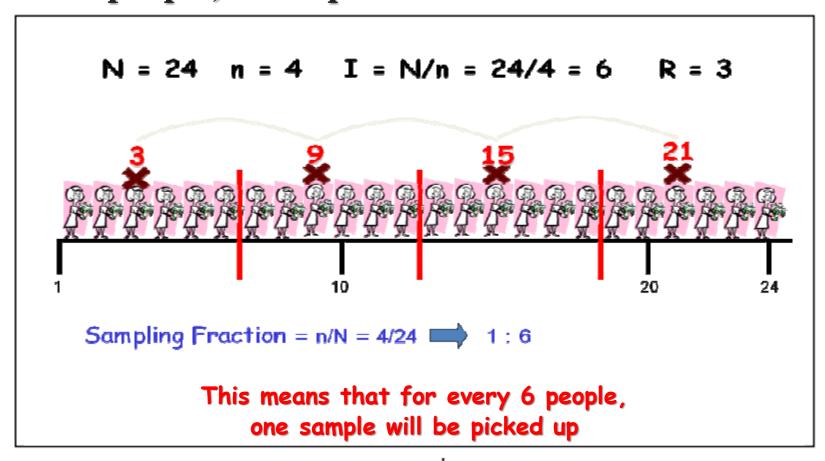
Linear systematic sampling

Give rank to all units in the population from $1, 2, 3, \dots N$

Let n be the specified sample size

Calculates the sampling interval using the symbol I, which $I = \frac{N}{I}$

Select the Random Start (R) where R is between I and I, where Rmay be random from lucky draw, random number table or computer


The unit selected as an example is a unit with ordinal numbers corresponding to the values R, R + I, R + 2I, ..., R + (n-1)I

Linear systematic sampling

Example

Want to select a sample of 4 people out of a total of 24 people, it can proceed as follows:

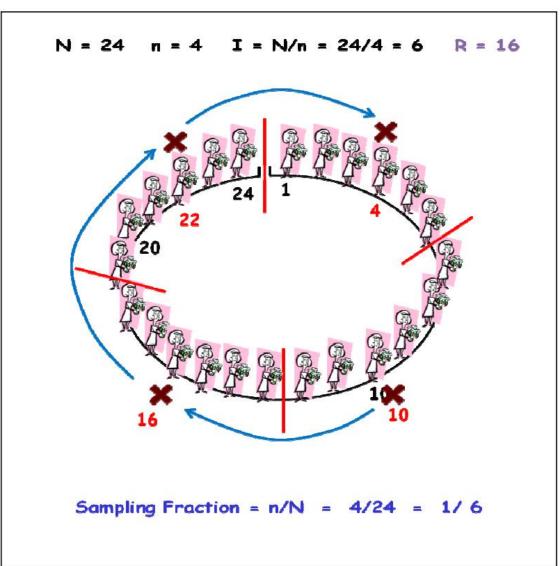
Circular systematic sampling

Let the numbers in order with every unit in the population are 1,2,3, ... N

Let *n* be the specified sample size

Calculates the sampling interval using the symbol I, which $I = \frac{N}{I}$

Select the Random Start (R) where R is between I and I, where Rmay be random from lucky draw, random number table or computer



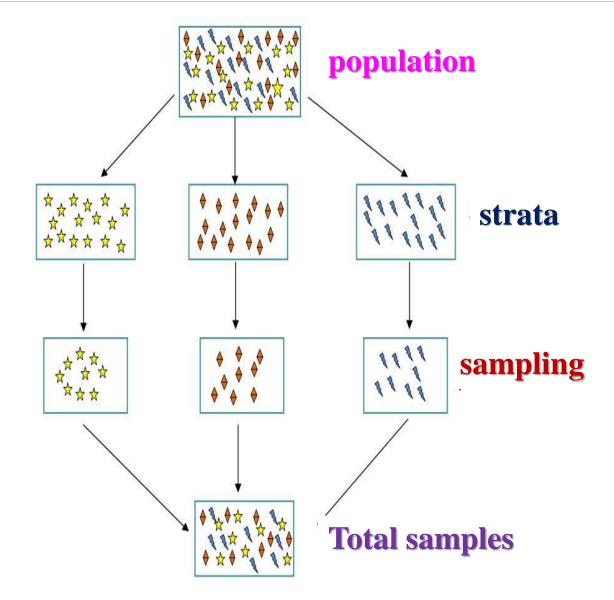
The unit selected as an example is a unit with ordinal numbers corresponding to the values R, R + I, R + 2I, ..., R + (n-1)I

Circular systematic sampling

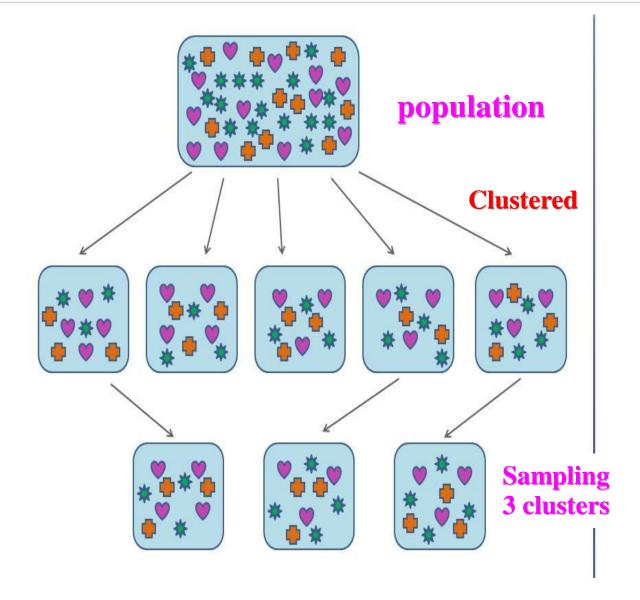
In case that the value of R + Ior R + 2I or ..., is greater than N, then N is subtracted. The result that matches any number of units is an example

Systematic Sampling

<u>Advantage</u>	<u>Disadvantage</u>
1. Easy, time-consuming and low-cost method	1. Get a bias estimator in the case that N is not equal to kn
2. Will be very effective when a population has a good order of sample units. Sampling can be selected more thoroughly than SRS	2. Cannot calculate unbiased estimators of the variance of the approximator from a single random sample (after every <i>k</i> units have been selected) then it is necessary to calculate the estimates from SRS 3. If the data is not sorted well, the estimates are less effective than SRS



Stratified Sampling



Cluster Sampling

Unequal Probability Sampling

Village A N = 100 houses 10% sampling N=10 houses

Equal **Probability** Sampling

Village B N = 1,000 houses 10% sampling N= 100 houses

Un-equal Probability Sampling

- Select n of the total samples with unequal probability
- Number of samples depend on population size
- Probability proportional to size (PPS)
- Many methods are available
- However, PPS is suitable for replacement sampling
- While fisheries data almost use without replacement sampling

Non-probability sampling

Non-parametric Data Analyses

Accessible sampling

Accidental sampling

Purposive sampling

Volunteer sampling

Quota sampling

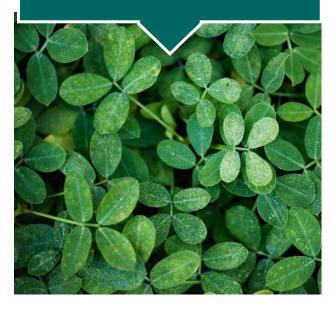
Snowball sampling

Accessible sampling

- Convenient sample unit selection
- Sampling from the fish tank
- There is no opportunity to choose the ones below
- Or have already selected the size

Accidental sampling

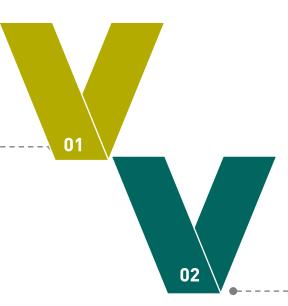
- Accidental selection of sample units
- Don't fore plan which sample unit to choose
- Unexpected sample selection or easy to operate
 - Select fish samples by swing
 - Select passers-by for interviews or data collection



Purposive Sampling


- most common in research in fisheries biology / management
- Use one's judgment and experience how to choose which sample units to represent the population

- Often a specific sample unit that attractive to the researcher, or
- The sample unit has a good familiarity and happy in providing information


- convenient by studying a subset of the population
- Suitable for small sampling and
- Has limited operating time or
- Prelim. Study

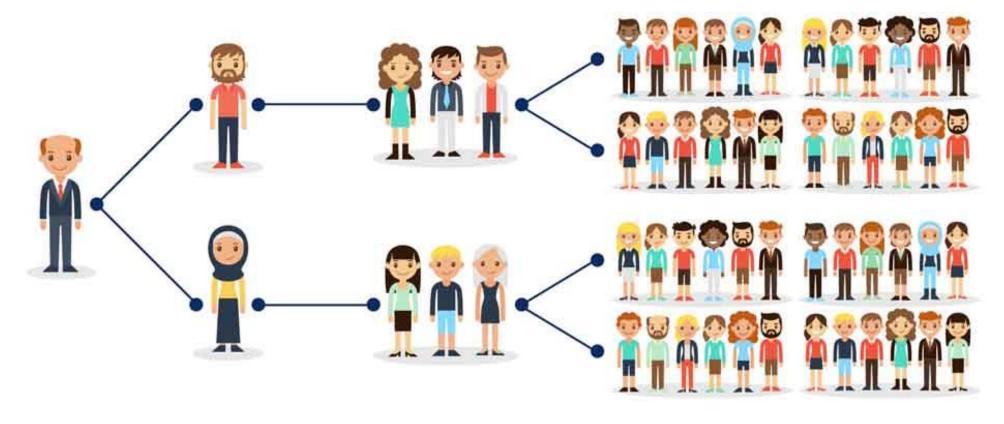
Volunteer Sampling

• Selection of representative sample units

- Impossible to select the originally sample unit due to the difficulty in selecting the sample unit and / or
- The occurrence of unforeseen circumstances
- Need to find an agent to compensate for the original samples

Quota Sampling

W.A. medo


- Widely used in polling, market research.
- Pre-setting quotas for all strata.
- The sample will be collected gradually until meet the complete no. of samples
- The strata usually be geographic area, gender, age, income, etc.
- The most popular non-probability sampling because it seems to have a good principle.

SNOWBALL SAMPLING

