Introduction to Fisheries Resources Surveys

MATSUISHI Takashi Fritz

Faculty of Fisheries Sciences,

Hokkaido University

MATSUISHI Takashi Fritz(1964-)

- BLA(U Tokyo), MSc (U Tokyo), PhD (U Tokyo)
- Professor of Hokkaido University
 Faculty / School of Fisheries Sciences
 Graduate School of Global Food
 Resources
- Majors
 - Stock Assessment / Fisheries
 Management
 - Cetology (Whale / Dolphin / Porpoise)

1. Estimation of Proper Catch Amount

• To establish a sustainable fisheries, and achieve to the Maximum Sustainable Yield (MSY)

2. Forecast of Fisheries Condition

- Forecast of the fishing season, fishing ground, composition of fish for the efficiency of fishing operation and management.
- For migratory pelagic species, the forecast is important.
- 3. Find the property of fish resources
 - For establishing efficient and proper stock enhancement activities.
 - Targeting coastal fish and shellfishes.

On land survey

- Statistical survey
- Port survey
- Market survey

Onboard survey

- Sampling survey
 - Trawl
 - Gillnet
 - Longline
- Acoustic survey
- Sighting survey

Survey Items 1/2

- Categories
 - By Species / by Gears / by Seasons / by Areas

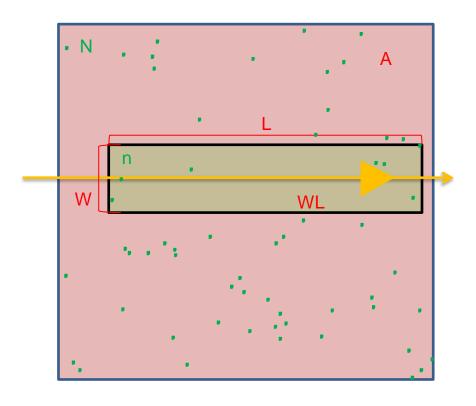
- Statistical Survey
 - Catch / #boats / #operation days / #hauls / #gears /duration of towing net/ gear size etc.

Survey Items 2/2

- Sampling Survey
 - Density \rightarrow Abundance estimation
 - Body length →Length frequency distribution
 - Body weight → Weight frequency, Length-Weight relationship
 - Sample collection (Otoliths, Scale for Age determination, stomach for diet analysis, muscle for DNA anal.)
 - Sex, maturation

Abundance estimation

- Abundance = Density x Area
 - Measure the density (t/nm²)
 - Assume the area that the distribution is homogenous and find the area (nm²)
 - Abundance (t) is calculated from
 Density and Area



Density estimation

- # samples
 / gear swept area
- # samples

 / survey length L
 / gear width W

$$N = \frac{nA}{WL}$$

Catch per unit effort (CPUE)

Index for fish density

•
$$CPUE = \frac{C}{X} = \frac{qXN}{X} = qN$$

- Effort : index of fishing activities quantity
- It is expected that the catch become twice if effort become twice
- #boats / #operation days / #hauls / #gears /duration of towing net etc

Abundance index

- If you have several areas and CPUE data, you can calculate the abundance index
- $\widehat{N} = \sum_{i} \left(A_i \frac{C_i}{X_i} \right)$

- i Area number
 C : catch
 X : effort
 A : Area (nm²)
 N : population(biomass)
- Average density index : \widehat{N}/A
- Effective fishing effort : $\tilde{X} = AC/\hat{N}$

Example of Calculation

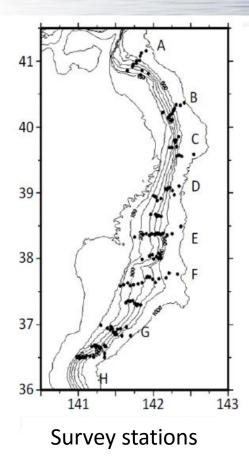
No.	Area (km²)	Catch (kg)	Effort (haul)	CPUE (kg/haul)	Abundance Index (km ² ·kg/haul)
Ι	A_i	Y_i	X_i	$u_i = Y_i / X_i$	$\widetilde{P}_i = A_i \cdot u_i$
1	10	200	20	10	100
2	20	600	40	15	300
3	20	200	20	10	200
4	10	600	40	15	150
Total	60	1600	120		750

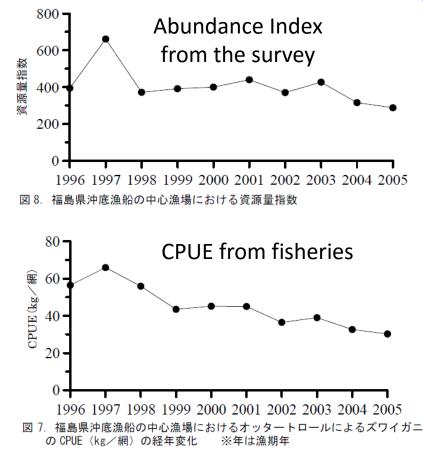
Effective Effort(haul)

Effectiveness

$$\widetilde{X} = \frac{YA}{\widetilde{P}} = \frac{1600 \times 60}{750} = 128$$
$$\varepsilon = \frac{\widetilde{X}}{X} = \frac{128}{120} = 1.067$$
$$f = \frac{\widetilde{X}}{X} = \frac{128}{120} = 2.13$$

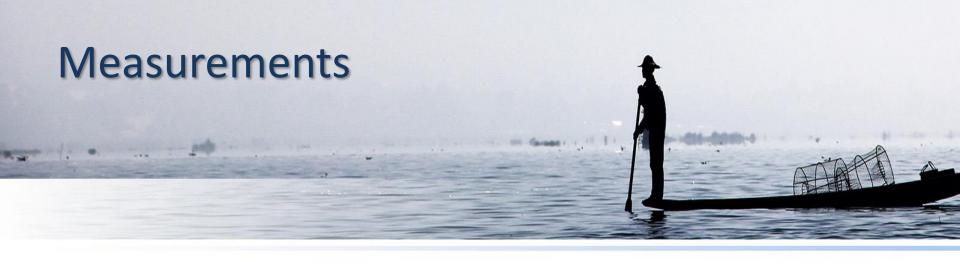
60

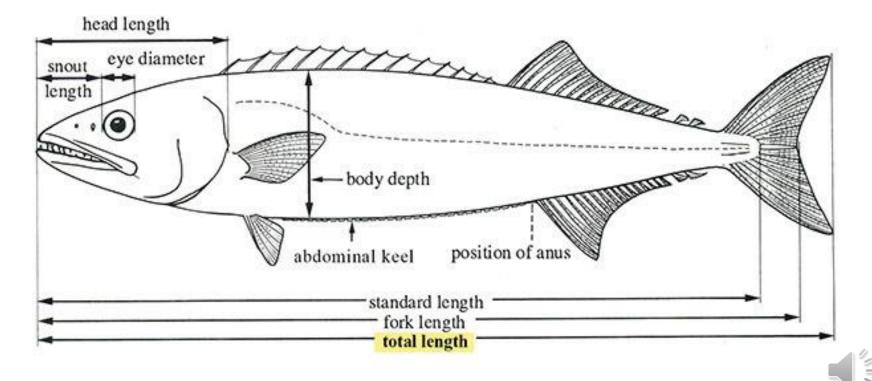

A



Effective fishing density(haul/km²)

Trawl survey of Snow crab in Pacific coast of Japan





		11:11:11:11:11:11:11:11:11:11:11:11:11:	a proved a proved and
			1:1:1:1:1:1:
	://://://		1:1:1:1:1
111:11:	111:11:11:		11:1:1:1:1:
Hiller	11:11:11		11:1:1:1:
11:11:11	//////i//i		11.1.1.
11/1/1	[1]]!!!!!!		
111:11	://://:		1111111
11:11;	'///i//i/		ill i l i l i
/////i	///i//i/		1 1 1 1 1 1
11/1/1	1111111		
1////	///////////////////////////////////////		
$\left \left \left \right \right \right $			
11111	///////		
11:11			1,1,1,1
//////			
11111	//////	1	
1,111,			
1111	//////		1 1 1 1 1 2 1 2 1
11111	//////		
1111			leide de de e
0 1	10 11	10	

- Clearly specify the length class
- No need to record the real body length

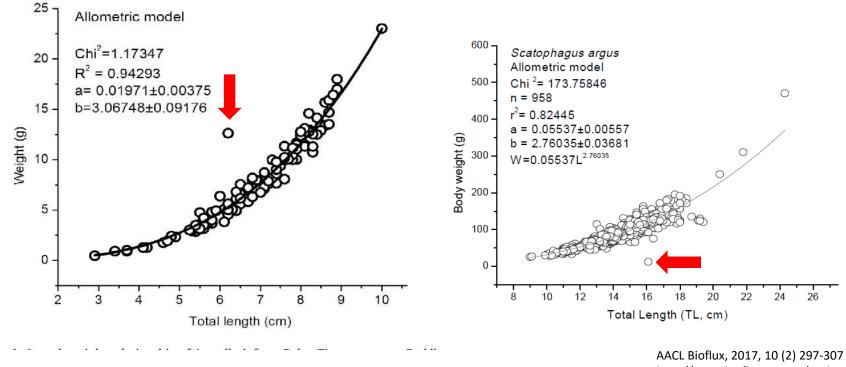
TANITA Kitchen Scale KW-220 0.1-2000g Waterproof 5500JPY

測定くん さけ定リミテッド

What is GIGO?

The quality of information coming out cannot be better than the quality of information that went in.

GARBAGE


Garbage In, Garbage Out

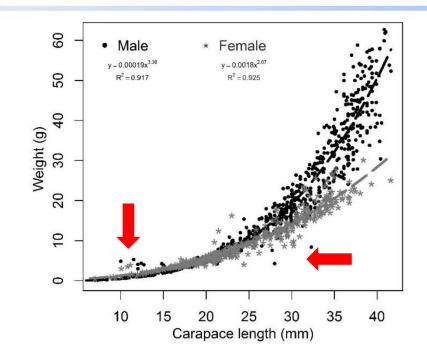
GARBAGE

GIGO is used in IT

and mathematics

10.1016/j.ejar.2018.07.003

http://www.bioflux.com.ro/aacl


Data check

- Check the data by using Length-Weight Relationship
- Usually L-W relationship is precise.
- Outliers will be made from human error.
 (22cm -> 12 cm etc)
- If an individual have twice weight comparing to the similar size, person in charge of measurement should note it. No note means error.

Data check

 If you find two lines, consider sexual dimorphism or mixed species.

http://dx.doi.org/10.3856/vol46-issue2-fulltext-14

Allopetrolisthes punctatus

Tips for good survey

- Understand the basics in training course
- Design with well-experienced researchers
- Record everything you found in the survey even if it is not required
- Analyze the data with onboard researcher and data analyst
- Revise the survey design after data analysis

